首页> 外文OA文献 >Energy-Momentum Tensor for the Electromagnetic Field in a Dielectric
【2h】

Energy-Momentum Tensor for the Electromagnetic Field in a Dielectric

机译:介质中电磁场的能量 - 动量张量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The total momentum of a thermodynamically closed system is unique, as is thetotal energy. Nevertheless, there is continuing confusion concerning thecorrect form of the momentum and the energy-momentum tensor for anelectromagnetic field interacting with a linear dielectric medium. Here weinvestigate the energy and momentum in a closed system composed of apropagating electromagnetic field and a negligibly reflecting dielectric. TheGordon momentum is easily identified as the total momentum by the fact that itis, by virtue of being invariant in time, conserved. We construct continuityequations for the energy and the Gordon momentum and use the continuityequations to construct an array that has the properties of a traceless,diagonally symmetric energy-momentum tensor. Then the century-oldAbraham-Minkowski momentum controversy can be viewed as a consequence ofattempting to construct an energy-momentum tensor from continuity equationsthat contain densities that correspond to nonconserved quantities.
机译:热力学封闭系统的总动量是独特的,总能量也是独特的。然而,关于用于与线性介电介质相互作用的电磁场的动量和能量动量张量的正确形式,一直存在困惑。在这里,我们研究了由传播的电磁场和可忽略不计的反射电介质组成的封闭系统中的能量和动量。戈登动量由于时间不变而容易守恒,因此很容易将其标识为总动量。我们构造能量和Gordon动量的连续性方程,并使用该连续性方程构造具有无迹,对角对称的能量动量张量特性的阵列。然后可以将百年历史的亚伯拉罕-米科夫斯基动量争论视为试图从包含对应于非保守量的密度的连续性方程式构造能量动量张量的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号